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A magnetic field is shown to be asymptotically (t+m) decaying in a flow of finite 
conductivity with v = Cr, where C = C,(t) is a random matrix. The decay is 
exponential, and its rate does not depend on the conductivity. However, the magnetic 
energy increases exponentially owing to growth of the domain occupied by the field. 
The spatial distribution of the magnetic field is a set of thin ropes and (or) layers. 

1. Introduction 
A flow with uniform velocity cannot change the magnetic field in magnetohydro- 

dynamics. So a linear velocity v i  = cikrk is the simplest velocity field in which a 
transformation of kinetic energy to magnetic energy seems possible. 

The linear velocity field is usually understood as a local approximation to a smooth 
velocity field of a general type. With this meaning i t  was originally used in 
hydrodynamics to describe small-scale turbulence (Townsend 1951 ; Batchelor 1959 ; 
Monin &, Yaglom 1975). This approximation seems to be still more attractive with 
respect to the kinematic dynamo problem in so far as the magnetic field is not 
connected in any way with the velocity, in contrast with the vorticity o = V A v ,  
which, in addition, proves to be uniform. The dynamo problem in reflectionally 
invariant homogeneous and isotropic turbulence, put forward by Batchelor, was 
studied in this approximation by Saffman (1963), Moffatt & Saffman (1964), 
Knobloch (1977, 1978) and others. Steady magnetic configurations in linear flow were 
examined by Moffatt (1963) and Clarke (1964). The linear velocity field is well known 
in cosmology (the Hubble law). The magnetic field in the anisotropic Hubble flow 
was studied for instance by Zel’dovich (1965). 

It was shown by Moffatt & Saffman (1964) that  the kinematic dynamo equations 
have no exponentially growing solution in the linear velocity field for finite (even very 
small) conductivity. However, in spite of the magnetic-field decay, simultaneous 
exponential growth of the total magnetic energy is possible owing to still more rapid 
growth of a domain occupied by the magnetic field. The analogous effect was noticed 
earlier by Pearson (1959) in hydrodynamics. 

The results were obtained for the case of the time-constant (determinate or random) 
diagonal matrix Cik( = C).  

In  the present paper we will consider a more general case of the time-dependent 
random non-diagonal matrix C. The results are referred to the magnetic-field 
realization and not to its average properties. In  essence they are reduced to the case 
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of the constant diagonal matrix. So we shall devote a section ($3) to clear this simplest 
case. 

The technique we use to treat the general case ($4) is to reduce the kinematic 
dynamo problem for the differential induction equation to  the ' algebraical ' problem 
of multiplication of large number of matrices, or in other words to  the calculation 
of multiplicative integrals. 

2. Formulation of the problem 

given flow of a conductive incompressible fluid 
The problem is to study the evolution of an initially given magnetic field in the 

aH 

V . H  = 0, 

- + ( v * V )  H = ( H  V) v + vm V'H, 
at 

H(0,  r )  = H,,(r), 
where v, is a constant magnetic diffusivity, v( t ,r)  is the velocity field. The initial 
magnetic field Ho(r) is usually considered to  vanish at infinity, to be finite and to 
possess finite total energy.t Let us discuss these conditions in a more detailed way. 
A finite total energy does not imply yet that  the magnetic field vanishes when r -too. 
For example, a system of an infinite number of magnetic dipoles with vanishing 
magnetic moments can make JWZ d3r limited, but a magnetic field calculated over 
some sequence of points (on the centres of the dipoles) going to infinity will be 
unlimited. Moreover, the finite limit of the total magnetic energy does not imply the 
absence of local singularities of the field. However, when i t  is assumed that the initial 
field is created by the current distribution in a finite volume the magnetic field will 
evidently vanish as O ( F ~ ) .  

The solution of the problem ( 1 )  basically depends on the form of the magnetic-field 
decrease at infinity. For example, when the field vanishes more slowly compared with 
O(rP3), say as O(x-l In x), along one axis (which guarantees the finiteness of the total 
magnetic energy), exponential growth of the magnetic field can be shown to be 
possible. 

It should be noted that the finite total energy and even the condition for vanishing 
of the finite field Ha as O(rP3) when r+oo do not guarantee limited Fourier modes 
of the field (logarithmic singularities are possible). 

We shall consider the velocity field 

v = Cr, tr C = 0, (2) 
where Cis  a random (or determinate) matrix. The second condition is due to V- v = 0. 

Let us focus attention on one rather delicate point. The matrix C for a random 
linear velocity field depends on time and the random variable 6 which determines 
a realization of v .  For the given 6 we have a definite matrix function C,(t) describing 
the time evolution of the velocity field. It is natural to demand that the initial field 
distribution must not depend on <, i.e. on the future history of the velocity field. 

3. Qualitative prelude 

fluid elements obeys the equation 
The linear velocity field implies that  an infinitesimal vector 6ri connecting two close 

d6r. 
2 = cik6rk 
dt 

(i, k = 1,2,3) .  

t If the field does not vanish a t  infinity, for example, H, = H ,  = const, H ,  = H, = 0, then there 
is the exponentially growing solution of the problem (1) in the velocity field (2): H ,  = H, exp (cl t ) .  
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When the matrix cik is constant and diagonal (el, c,, c, + 0), this vector will evidently 
grow exponentially. By virtue of incompressibility, c, + c , + c ,  = 0, so that a fluid 
particle of spherical form stretches along one, say the first, axis (c, > 0) and 
compresses along the other axes (cz,  c, < 0 )  to form a ‘rope’, or squeezes along two 
axes (el, c2 > 0) and compresses along the rest to  form a ‘pancake’. 

It is known that a magnetic line embedded in an ideal conductive fluid evolves as 
the vector 6ri if the field was initially aligned with this vector (a frozen-in condition). 
One would think that this gives a solution to our problem, a t  least in the case of high 
conductivity, which is of practical interest. Say, for example, in the case c, > 0, 
c 2 ,  c, < 0 that the H ,  component grows exponentially, then the other two field 
components should decay exponentially. However, the situation is completely 
different: even a very small (but finite) magnetic diffusivity results in the opposite 
answer. 

For the purpose of making estimates i t  is convenient to use the Fourier space k, 
of the initial magnetic field. One should distinguish the solutions of two types. 

(a)  c, > 0,  c3 < c, < 0 (a  rope) 

I n  this case the scales along the k, , ,k , ,  axes exponentially decrease in time as 
k,, exp ( I c , ~  t) and k,, exp (Ic31 t ) .  Hence almost all the field harmonics, except for the 
harmonic a t  k, = 0 and those corresponding to k, in an exponentially narrow cone 
parallel to  the k,, axis (figure 1 a) ,  abruptly decay in proportion to exp ( - vm j: k2(s )  ds), 
i.e. as the exponent to exponent. A marked contribution to  the magnetic field comes 
only from the harmonics of the cone vmj:k2ds = O(1). The cone has an elliptical 
cross-section with semiaxes proportional to exp ( -  lczl t )  and exp ( -  Ic,I 6). Since the 
field is solenoidal (kH, = 0) the directions of the harmonics with wave vectors of the 
cone are nearly orthogonal to the cone axis, or more exactly, they form an  ‘orthogonal 
cone ’. The harmonics of the orthogonal cone have projections on the k,, axis of order 
koJkoz cc exp ( - lczl t )  so that they grow in time as exp (c, t )  exp ( - lczl t ) .  The first 
factor is due to stretching along the k,, axis. 

The magnetic field in r-space is estimated as the product of an amplitude of the 
growing harmonic by the volume of the cone proportional to exp [ - (IcJ + IcJ) t ] .  
Hence 

H(t,  r )  a HI, d3k, a exp ( - lczl t ) .  s 
Thus the magnetic field having initial harmonics inside the cone stretches into a rope 
parallel to the first axis and decays asymptotically. The other fields will decay more 
rapidly. 

However, the domain occupied by the magnetic field grows exponentially owing 
to stretching along the first axis. Therefore the total magnetic energy grows as 

jH2 d3r a exp “c1 -2elczl t)l = exp T(lC3l-  Iczlf tl 

because Jc,I > IczI. Let us emphasize that the magnetic diffusivity is very important 
here. It stabilizes the scales along axes 2 , 3  and does not prevent the extension along 
axis 1. 

( b )  c, > c2 > 0, c, < 0 (a  pancake) 

I n  this case the cone is constructed by wave vectors close to the (k,,, k,,)-plane (see 
figure 1 b) .  I ts  opening decreases as exp ( - lc,l t )  insofar as the cone is determined by 
the condition v, j: k2 ds cc k,, exp (Ic,l t) = O( 1). It is evident that  a harmonic 
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FIGIJRE 1 .  Cone of the wave vectors corresponding to  the magnetic field harmonics which do not 
decay owing to  magnetic diffusion. (a)  c1 > 0 > cp > c 3 ;  ( b )  c1 > cg > 0 > c3. 

of maximal growth is directed along the k,, axis and its wave vector is close to the 
k,, axis. Its amplitude grows as exp (cl t ) ,  so that the magnetic field in r-space vanishes 
asymptotically as 

H(t,  I) cc exp (cl t )  exp ( -  Ic,( t )  = exp ( -c2 t ) .  

To estimate the total magnetic energy one should multiply H2(t ,  I )  by the volume 
occupied by the magnetic field. The volume grows as exp L(cl + c2) t ]  because stretching 
proceeds now in the (k,,, k,,)-plane. Again we have the growing total energy 

H2d3r  cc exp [(lc31-2c2)tl = exp[(c,-c,)tl, s 
because c1 > c2. 

The case c2 = 0 corresponding to the plane motion vy = 0 should be noted. I n  this 
caw a stabilization of the field with an exponential growth of its total magnetic energy 
is possible. The result does not contradict the exclusion theorem for the plane motion 
( v ~ ,  vz) (Zel’dovich & Ruzmaikin 1980). I n  contrast with (2) this theorem implies that  
the velocity field vanishes at infinity. In  the present case the H, component decays 
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exponentially, independently of the otrher components owing to  thc condition vy = 0 
(see ( t ) ) .  However, this decaying field is a non-decaying source for the two-dimensional 
field H,, Ifz owing to the exponential growth of  a domain occupied by 11,. 

Up to now we-have considered the diagonal matrix C. Let us now discuss the 
non-diagonal-term effects. 

The usual direction of thinking is as follows. A general matrix C can be decomposed 
into antisymmetric and symmetric parts. The former is excluded by transition to  the 
frame of reference rotating with constant angular velocity i e ik l ck l  (e ik l  is a unit 
pseudotensor). The surviving symmetric part can be put into diagonal form with 
time-independent eigenvalues. But the principal axes of this matrix will intricately 
(but periodically) change in time. The arising problem looks to be insurmountably 
as difficult in the absence of simplifying assumptions. 

In  reality, the non-diagonal terms of C are not so dangerous. Consider first the 
simple plane Couthe flow, where only cI2 =/= 0. The abovementioned diagonalization 
of this matrix by transition to the rotating frame of references results in a matrix 
with two equal eigenvalues of opposite signs. However, owing to the change of the 
principal axes, tthe exponential stretchings are periodically followed by exponential 
sqneezings, so that the resulting growth of the magnetic field in the absence of the 
magnetic diffusivity will be linear. Any finite v, produces the exponential decay of 
the field, depending on the magnetic diffusivity. 

The technique developed below ranks equally well with any matrix C. 

4. Method 
The problem is solved as follows. First, the partial solutions 

H(t,  r )  = h(t, k,) exp (ik(t)-r) (3) 

of the plane-wave type with the amplitJude and wave vector changing in time are 
studied. Substituting (3) in ( 1  ) and coinpiring terms with the same powers of I, we 
have 

where C* is the mat,rix transpose to C (in general non-diagonal and time-dependent), 
and 

= - vn, k'h + Ch. 
dh 
dt 
- 

The field (3) is subjected to  the condition 

k * h  = 0 

which, according to (4) and (5), is conserved in time. 
Let 5 = T(t,,, t )  be a fundamental matrix of (4) in the interval ( t o ,  t ) .  It is evident 

that T(tO, t o )  = E (=  Sik) .  The matrix T can be represented in the form of the Volterra 
multiplicative integral (see e.g. Gantmacher 1967) 

1 

5 = II (E- C*(S) ds). 
S=O 

lnsofar as tr C* = t r  C = 0, det T = 1. 
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The solution of (4) and (5) is easily found in terms of the matrix 7,: 

k(t, k,) = Tt k,, I 

where h, = h(0, k,) is a Fourier spectrum of the initial magnetic field. 
Then the problem (1) is solved by the plane-wave expansion 

H(t, r )  = l h ( t ,  k,) exp ( ik-r)  d3k,, 

or, after substituting (7), 
t 

H(t,  r )  = exp i (T ,  k;r) - vIn J, (7'' k,)2 ds] (T?)-l h,d3k,. 

By using the transformation k +  5 k ,  t,he Parseval equality and then the reverse 
transformation, we obtained the following expression for the magnetic energy : 

S [  

The multiplicative integral (6) is easily calculated in the case of the constant matrix 
C. The general 3 x 3  matrix C, according to the well-known Jordan idea, can be 
representcd in the three forms 

Here we have taken into account that  t r  C = 0. The constants c,, c2 ,  c3 = -cl - c2 and 
the corresponding basis vectors are generally non-orthogonal and complex. The 
calculation of (6) is reduced to the simple multiplication of matrices E- C*t/n 
followed by the transition n +a. As a result we obtain for the above three forms of 
C 

0 0 - t  

0 0 0  

The calculations of k and H (see (7) and (8)) with these 5 support the conclusions 
of $3. 

5. Random matrix 
Our task is to calculate the multiplicative integral (6) in the case of a random 

matrix. Let us assume that C,(t) is a matrix process satisfying the natural conditions 
of ergodicity. For the sake of simplicity we consider one simple model. The range of 
applicability of the results is apparcntly more broad. In particular, the matrix C,(t) 
may be of Markov type, with an exponentially decreasing binary correlation function 

We consider the matrix function c,(f) constant in the time intervals (0, T ) ,  ( 7 ,27 ) ,  
..., [(n- 1)7, n7], in which i t  takes the indepmdent matrix values C,, C,, . .., C,. 
Recall that t r  Ct = 0, i = 1 ,2 ,  ..., n. 

Such a type of process is called .the innovation process'. It is a good approximation 
to a stationary process with a finite correlation time (owing to invariance t +t+7  and 
the independence of the matrices C,) 

(c(4 C * ( S ) ) .  
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I n  each time interval the matrix C is constant, so the integral (6) can be calculated 
(see $4). Let 

iT 

(i-1) 7 

Ti = n (€-C:ds). 

The matrices Ti are evidently independent and det 5 = 1. Evidently also 

n 

i=1 
q=nq (9) 

when t = nr. 
Consider first the action of q on a vector k, of unit length. Let lk,l E R, denote 

the length of the vector k,. It is evident that  the unit vectors K ,  = T, k,-J]T, k,-,J 
form a Markov chain on the unit sphere. Since 

It follows that 

According to the ergodic theorem (or the strong law of large numbers) there exists 
with unit probability a limit (the Liapunov index) 

R, = ITnTn-l... Tlk,l = IT,K, _ l l ITn - l~ ,_z l . . . IT l~o l .  

Let us show that y1 is positive.? Consider the function 

where ( ) denotes a statistical average. It is clear that 

df 
dP 

y l = -  at  p = O  

The function f(p) is analytical and concave. I n  fact, according to  the Cauchy- 
Buniakowski inequality 

(&;P+q)) d ((Rg) (R$))k 

After taking the logarithm and dividing by nr, we have immediately 

f(&+d) i(f(P)+f(d). 
It is evident thatf(0) = 0. We shall show also thatf( - 3) = 0 (the number 3 is of course 
connected with the three-dimensionality of the space under consideration). In  fact, 
as i t  is clear from simple geometrical consideration (figure 2), the Jacobian of the 
mapping K +  T , K / I T K ~  is ITKI-~ = R i 3  (for any unimodular matrix T ) .  So the 
integral over the sphere of unit radius K is 4n = j d a  = Rz3 da,, where da,, and d a  
are the area elements before and after the mapping. After averaging 

J ( R k 3 )  da, = j exp [nf( - 3) + o( i)] dao x 4n exp [nf( - 3)1. 

Hencef( -3) = 0. 
t For degenerate matrices C, for example C = AUA-', where U is a random matrix of rotation, 

A is a constant matrix it 1s possible that  y ,  = 0 However, this case is of no interest. since the 
inclusion of the magnetic diffusivitp immediately results in exponential decay of the field (cf the 
end of $3) .  
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FIGURE 2.  duo and d u  are the area elements on the sphere before and after the mapping, and dul 
is an area element resulting from duo due to the 3-dimensional mapping K + ~ K .  By definition 
J = du/du, = (du/du,) (du,/du,). It IS clear that du/du, = Ri2  because they have the same solid 
angle. Then du,/du, = dKdu,/(dKdu,) = Ri1d3k, fd3k, = RG1 because the mapping K +  5 K has 
unit Jacobian (det 5 = I ) .  As a result J = R i 3  

Let us show now t h a t f b )  + 0. Consider a non-random matrix To and a neighbour- 
hood FT of it for which A, > A, > 1, A, is the absolute value of the main eigenvalue 
of the matrix T. This neighbourhood can be so constructed that (owing to ergodicity) 
the matrices 5 belong to i t  with a non-zero probability p > 0. Then 

(R;) > p n q p .  

Hence 
1 l n p  In A, 

f ( p )  3 -In r pht  = ---+-p, 7 7 

i.e. fb) -+a when p +a. 
Thus the function has the form shown on figure 3;  thus proving the statement 

To illustrate this important and surprising result consider the area-preserving 
stretchings (x+hx, y-fA-ly,A > 1 )  of an initial spherical domain onto an ellipsoid 
by a random matrix of unit determinant (figure 4). The direction of the stretching 
is randomly changed a t  every step. However, a measure of the vector directions with 
the increasing length is clearly greater than one-half. In  fact, a value of the transform 
vector is h2ki+  h - 2 k i  = k2(A2 cos2 (p + A P 2  sin2 4). It is greater than k2 = k$ + k; when 

it is necessary to consider 
its action not only on the vectors but also on the planes. To proceed we apply the 
technique used by Furstenberg (1963) and Tutubalin (1972). 

By orthogonalization of rows of 5 = T,,, say beginning from above, we can 
decompose this matrix onto the product of a lower triangular matrix A with real 
positive elements on its diagonal and an orthogonal matrix U (rotation of matrix) 

Y1 ’ 0. 

cos q5 3 (1 + A2) -4. 
In  order to  penetrate more deeply into the structure of 

T,, = U(n)  A ( n ) .  ( 1 1 )  
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FIGURE 3. The form ofthe subsidiary function f(p). The derivative of this function a t  p = 0 is the 
Liapunov index y l .  The straight line (ln p +  In h , p ) / ~  is a lower estimate off@). 

The diagonal elements A,,, 01 = 1 , 2 , 3 ,  play a determining role. To investigate these 
elements we use the displacement n --f n + 1 : 

T(n+l)T = %+I Tm = (Trt+, u ( n ) )  A(%)- 

The matrix in parentheses can also be decomposed as in ( 1  l ) ,  so that 

qn+l)T = 4 n ) ,  

i.e. A(n + 1 )  = 8(n) d(n) .  According to the definition of matrix multiplication the 
diagonal elements A,,(n + 1 )  are the products of corresponding diagonal elements 
d,,(n) and A,,(n), so that 

InA,,(n+ 1 )  = Ind, , (n)+~n~, , (n) .  

Therefore one has 
n 

j=1 
In d,,(n) = Ind,,(j). 

Thus 

... 

where rUI+rU2+11.3 = 0; 

because det d(n)  = 1. 
We considered above the matrix C of general type when the function C,(t) covers 

with non-zero probability density the whole algebra of matrices with tr C = 0. So 
,ul + p2 += ,us with unit probability. 

I n  the degenerate cases, for example when C,(t) is a matrix of random rotation 
around a given axis, ,u, can vanish. 
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' f  

FIGURE 4. When a sphere is stretched into an ellipsoid by an unimodular matrix T (det T = 1) 
the measure of the squeezing directions (shaded regions) is less than one-half: 
$ = arccos ( 1  + A Z ) - +  > in. 

According to the ergodic theorem the limits pa+ y, exist. Let us show that y1 
coincides with the Liapunov index (10). To this end we stretch the vector 

by the matrix T,, decomposed by (1 1). The norm of the resulting vector is 

By stretching a vector with the matrices T;I, . . . , Ti1 one can obtain the limit 
p3 --z y3 < 0. The same is evident from the condition 

YI+Y2+?3 = 0. 

Note that y, are non-random constants. However, taking account of corrections 
results of course in a random (but asymptotically ( t - too)  vanishing) contribution, i.e. 

4, = exp (Y, t + I, ti), 
where 7, are random Gaussian variables. 

Now we construct a basis e,, corresponding to yl, yz, y3. At first note that (10) is 
valid in the sense of unit probability, i.e. not for all k (even for the matrix C of general 
type). For every n there exists a very narrow (vanishing as n-tco) cone of k, 
contracting as exp ( - Jy3) n7). To construct the direction vector of this cone we subject 
a vector k to the transformation T;l.. . Ti1 ,  where T i 1  is the reciprocal matrix to 
T,. The resulting vector will evidently stretch as exp (Iy31 t ) .  Define the vector 

T;' T i 1  ... T;lk 
1 T;l T;l. . . T;lkl 

== 

This is the singular vector which will not stretch but decrease (as exp (Iy31 t ) )  under 
the action of T, Tn-l.. . T,. One can ensure that this vector will not change strongly 
under the action of the next matrix T,,,. I n  fact, 
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so that the vector T, . . . T,  epfl) is also contracting, i.e. it lies inside the cone around 
the vector ep). Hence there exists a limit ep)+e,. 

To consider the next basis vector e, one should consider the action of the reciprocal 
matrices on a plane containing the vector e3. Thus one can find the plane of maximal 
contraction. The vector e, can be taken as the vector belonging to this plane and 
orthogonal to  e3. The rest basis vector el is constructed as the vector orthogonal to 
e3 and e,. 

It is clear that  the basis e, depends on a complete trajectory of the process C,(t), 
i.e. on the random variable 6, and it, cannot be defined at the initial moment. However, 
in spite of random character of the basis, i t  does not depend on the time. 

So by considering the problem ( l ) ,  (2) with the random matrix function C,(t) at  
the basis (el, e2, e3)  we reduce i t  to the above case of the constant matrix C. Hence 
the main conclusions of $3 are valid in the stochastic case. 

6. Conclusions and remarks 

uniformly in r when H,, = O ( T - ~ )  as r+m. 
The magnetic field decays exponentially in time (say as exp ( -  lyzl t ) ,  y, =+ 0) 

The total magnetic energy j H 2  d3r grows exponentially as exp [(ly31 - Iy,l) t ] .  
In  the two-dimensional stochastic flow (us,  v z ;  y,  = 0 )  a study similar to the 

analysis presented in $ 3  shows that the magnetic field decays owing to the random 
corrections (7, ti) to the rate of growth (cf. the non-random case in §3) .  

The spatial distribution of the magnetic field is a set of thin ropes and (or) layers 
(see $3) .  In  such an intermittent distribution the mean field is evidently much smaller 
than the concentrated field inside a rope. For instance, in the rope case ( H )  - Ril  H N ,  
where N is the number of ropes in the volume. 

The spectrum of the magnetic field is anisotropic. The magnetic ropes are 
associated in the k-space with pancake configurations; the layers are associated with 
k-ropes. 

We are grateful to V. 1. Arnold and V .  N. Tutabalin for various discussions. 

REFERENCES 

BATCHELOR, G. K. 1959 J .  Fluid Me&. 5, 1 1  3. 
CLARKE, A. 1964 Phys. Fluids 7, 1299. 
FURSTENBERG, H. 1963 Trans. Am. Math. Sot. 108, 377. 
GANTMACHER, F. P. 1967 Mutriz Theory. Nauka. 
KNOFJLOCH, E.  1977 J .  Fluid Mech. 83, 129. 
KNOBLOCH, E.  1978 Astrophys. J .  220, 330. 
MOFFATT, H.  K. 1963 J .  Fluid Mech. 17, 225. 
MOFFATT, H .  K. & SAFFMAN, P. G. 1964 Phys. Fluids 7, 155. 
MONIN, A. S. & YAeLoM, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press. 
PEARSON, J. R. A. 1959 J .  Fluid Mech. 5,  274. 
SAFFMAN, P. G. 1963 J .  Fluid Mech. 16, 545. 
TOWNSEND, A. A. 1951 Proc. R.  SOC. Lond. A 209, 418. 
TUTUBALIN, V. N. 1972 Prob. Theory Applics 17, 266. 
ZEL'DOVICH, YA. B. 1965 Sou. Phys. J E T P  48, 986. 
ZEL'DOVICH, YA. B. & RUZMAIKIN, A. A. 1980 Sou. Phys. JETP 79, 980. 


